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ABSTRACT

An analysis of steady state operation of a vertically

oriented, variable conductance heat pipe is presented. The

effects of binary mass diffusion, axial pipe wall conduction,

and gravitational effects, caused by the difference in

molecular weight of the non-condensible gas and the working

fluid are incorporated. Analytical expressions for the con-

servation of mass, momentum, and energy are combined along

with equations of state to describe steady state operation

of the heat pipe. These expressions are combined to form

a system of three differential equations with three unknowns;

working fluid vapor velocity, mass fraction, and temperature.

These equations are nondimensionalized and an iteration scheme

for numerical solution of the equations is presented.
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LIST OF SYMBOLS

A = area

Ac = vapor space cross sectional area

A = axial wick-wall cross sectional area
p

C = constant

D = binary mass diffusion coefficient

D = vapor space diameterv

F = force

Fa = saturation pressure as a function of temperature

g = gravitational constant

h = convection heat transfer coefficient

h = heat of vaporization
fg

H = heat of vaporization as a function of temperature
fg

K = coefficient of thermal conductivity for wick-wall
combination

L = length of heat pipe condenser

m = mass

m = condensation mass flux

M = molecular weight

N = non-dimensional constant

P = pressure

P = perimeter of outside of pipe

P perimeter of vapor space

Q = power (condenser-heat rejection rate)

q axial conduction heat flux
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R = universal gas constant

Sa = working fluid vapor saturation density as a function

of temperature

T = absolute temperature A

V = velocity

x = axial distance

Greek Symbols

n = nondimensional distance

9 = nondimensional temperature

= nondimensional friction factor .Y

* = viscosity

P = density

T = viscous shear forces

x = mole fraction

w = mass fraction

SuperscLipts

* = nondimensional term

Subscripts

a = working fluid

b = noncondensible gas

c = condenser

e = evaporator

0 = initial value
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I. INTRODUCTION

A. BACKGROUND

A heat pipe is a closed, evacuated chamber that has the

inside walls lined with a wick structure, saturate. iith a

volatile working fluid. The steady state operation in% ives

vapor heat transfer and capillary action. A comprehensixe

coverage of the theory and operation of heat pipes can be

found in Dunn and Reay [Ref. 1]. Briefly, the operation of

a vertically oriented heat pipe will be discussed. The heat

pipe has three sections: an evaporator section, an adiabatic

section, and a condenser sc -'-ion. The heat pipe with the

three sections marked is shown in Figure 1.1. The lower evapora-

tor end of the heat pipe is heated, causing the working liquid

in the wick to vaporize. This phase change causes the working

fluid to absorb latent heat and the vapor pressure increases

in the evaporator end. The working fluid is drawn away from

the wick, causing the liquid pressure to decrease. The vapor

moves to the cooler condenser where it is condensed and the

working fluid gives up its latent heat. The condensate is

deposited on the wick which causes the liquid level to in-

crease thus increasing the liquid pressure. Capillary forces

take the higher pressure liquid from the condenser to the lower

pressure liquid end of the evaporator. The capillary forces ..

are assisted by gravitational forces when the heat pipe is

9
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Figure 1.1. Heat Pipe
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vertically oriented as shown in Figure 1.1. It is important to ,.

note that for heat pipes the evaporator position is not re-

stricted, but since the experimental data and numerical model

use a vertically oriented heat pipe, this orientation will be

used throughout this thesis.

The great advantage of heat pipes is that the vaporization

and condensation process allow for high heat transfer rates

with small temperature differences. Two other advantages are

that the basic heat pipe has no moving parts and can be used

* in many geometrical configurations. The heat pipe has limi-

tations and again, a comprehensive presentation of these limi-

tations can be found in Dunn and Reay (Ref. 1]. Briefly, the

five heat pipe limitations are as follows:

(a) The viscous limit is basically the low temperature limit.
This would be the minimum temperature for the heat
pipe to begin operation. Generally, the viscous limit
is only important during start up of some heat pipes,
i.e., liquid metal pipes.

(b) The sonic limit describes the limit of the vapor flow
velocity at the heat pipe evaporator exit. The re-
sulting choked flow condition limits the axial heat
flux capacity of the heat pipe.

(c) The entrainment limitation is due to the removing of
the liquid before it can return to the evaporator by
vapor flowing at high velocity.

(d) The wicking or capillary limit reflects the fact that
each combination of wick and fluid has a maximum
capillary head. As stated earlier, the capillary head
must increase with the liquid and vapor pressure drops
and can do so only up to the maximum capillary head.

(e) The last limit is the boiling limit. If temperatures
in the evaporator get too high the working fluid will
begin to boil within the wick. This will disrupt liquid
flow to the evaporator, causing the heat pipe to stop
working.

11-

i. • . ÷



a.

These five heat pipe limitations vary in importance, depending

on the temperature and corresponding axial heat flux operating

point. Since at different temperatures one can encounter

different heat pipe controlling limitations, it is important

to have a basic understanding of all five limitations.

. B. VARIABLE CONDUCTANCE HEAT PIPE

1. Basic Operation..

Variable conductance heat pipes are described in detail

in Marcus [Ref. 21. As described in the background section, a

change in the heat load will automatically change the operating

temperature and pressure of the heat pipe, given a constant sink

temperature. This is an undesirable quality for many situations

where it is desired to have a stable source temperature under

conditions of varying heat load or sink temperatures. An

example of this case would be the cooling of sensitive elec-

tronic equipment. Basically, a noncondensible gas is introduced

into the heat pipe along with the working fluid, making the

heat pipe become a passively controlled device. The nonconden-

sible gas occupies a certain portion of the condenser section,

depending on operating conditions. Increasing operating tempera-

ture in turn increases the vapor pressure of the working fluid

which compresses the noncondensible gas into a smaller volume.

This provides a greater active condenser area, thus allowing

a more stable source temperature than a conventional heat pipe.

When the operating temperature decreases, working fluid vapor

12
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pressure falls and the noncondensible gas expands, blocking a

larger portion of the condenser. The result is a passively

controlled variable condenser area, which in turn makes a

more stable source temperature.

2. Variable Conductance Heat Pipe Theory

Marcus [Ref. 2] describes a flat front theory and a

'diffuse front theory' for variable conductance heat pipes.

Flat front theory assumes the noncondensible gas is in the

form of a plug with sharply defined vapor-gas interface which Pt

is perpendicular to the axis of the pipe. Since this model -.

neglected the axial conduction in the heat pipe wall and diffu-

sion of vapor into the stagnant gas plug, experimental results

[Ref. 2] have shown this model to be inaccurate. The early

model of flat front theory provided initial insight into the

operating characteristics of gas loaded heat pipes. With the

incorporation of binary diffusion between the working fluid

vapor and the noncondensible gas and axial conduction in the

pipe wall, Marcus' [Ref. 2] 'diffuse front theory' establishes

a model of gas loaded heat pipes which provides better simi-

larity between computer program and laboratory results.

Gravitational effects on the vapor-gas interface are not

included in flat front theory or the 'diffuse front theory.'

Gravitational effects can greatly distort the axial temperature

profile when the working fluid and noncondensible gas have

significantly different molecular weights. This fact is demon-

strated by experimental results reported by Kelleher [Ref. 3].

13
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Batts (Ref. 41 conducted variable conductance heat pipe experi-

ments using working fluid/noncondensible gas combinations of

methanol/helium and methanol/krypton. Kane [Ref. 51 developed

an analytical model of variable conductance heat pipes which

includes the effects of binary mass diffusion, axial pipe-wall

* conduction, and gravitational effects which exist at the vapor-

"gas interface region as shown by Batts [Ref. 4] experiments.

144
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II. FORMULATION OF AN ANALYTICAL MODEL

A. PROBLEM STATEMENT

The purpose of this chapter is to formulate the equations

describing the steady state operation of a vertically oriented,

gas loaded, variable conductance heat pipe. As in Figure 1.1,

the condenser is above the evaporator for this orientation.

This analysis includes the effects of binary mass diffusion,

axial pipe wall conduction, and gravitational effects due to

the difference in molecular weight between the noncondensible

gas and the working fluid.

B. ASSUMPTIONS

The following assumptions are used to develop the system

of equations:

1. Heat, mass and momentum transport processes are treated
as one-dimensional in the axial direction within the
vapor space of a vertically oriented heat pipe.
Kelleher [Ref. 31 shows that in any other orientation,
gravitational effects cause highly three-dimensional
spatial variations when the molecular weights of the
working fluid and noncondensible gas differ substantially.

2. The noncondensible gas acts as a perfect gas. The
mixture of noncondensible gas and working fluid are
treated as thermodynamically independent substances.

3. Because of direct contact between the vapor and the
liquid saturated wick, the working fluid vapor is at
saturation conditions at all times.

4. The thermal resistance of the wick-wall structure, in
the radial direction, is negligible in comparison with
the thermal resistance due to convection outside the

pipe.

15
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II
C. ANALYSIS .

Kane [Ref. 51 presents a proposed solution for this prob-

lem. The following is a significant change to his proposed

solution with modifications being noted as they occur in .

this section. Variables with the subscript 'a' apply to the

working fluid and variables with the subscript 'b' apply to

the noncondensible gas. , ..

Utilizing the assumption that the noncondensible gas is

a perfect gas, the equation for noncondensible gas pressure

is:

b Pb T (I.l)
b

The principles of mixtures of thermodynamically independent

substances, which are found in Reynolds and Perkins [Ref. 61,

are used to define the total density and the total pressure.

= a + P b (11.2)

P P + Pb (11.3)

The definition of mass fraction is used to form the equation

for the working fluid vapor mass fraction.

a a P

16
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The solution, utilizing the conservation of mass, is

based on a differential element representing a section of

the heat pipe condenser, Figure 2.1. The conservation of

mass of species 'a' for the differential element yields:

VaAc (PaV + d-(paVa)dx)A + m P dx~a ac a aa dx a a C a v

This equation sets the mass of species 'a' into the control

volume equal to the mass of species 'a' out, including a

term to account for the removal of species 'a' by condensation.

The process of condensation is accounted for by multiplying

the condensation mass flux times the area, defined by the

vapor space perimeter times the length, dx, of the differen- ..-.

tial element. After basic algebra, the equation for conser-

vation of mass of species 'a' becomes:

0 = P + Ac paVa)

By using Fick's law of binary diffusion [Ref.7], and solving

for p aV a, the resulting formula is:

dwa
PaVa = a - pD a .

The final form for the conservation of mass for species 'a'

becomes:

.P dwPv d V) d aw
m vc + d-(lV) - -(pD a) 0. (11.5)
a Aa dx dx =

17
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Since species 'b' is a noncondensible gas, the condensation

mass flux of species 'b' equals zero. The resulting equation

for the conservation of mass for species 'b' is: C

dlbV - (W -pD -w•) =0
ax(wbPV) aidx dx

The mass continuity of the mixture is derived by adding

the conservation of mass of species 'a' with the conservation

of mass of species 'b'.

Pv d d dwdwb = 0.
ma c + (PV(Wa +Wb)) - -(pD( dx + -- ) = 0

Be aus Ac dx i dx d

Because +Wb is equal to one, and !(wa +wb) = (1) = 0,
a d a b dx

the final result of the mass continuity of the mixture is:

Pv d_
m •c + -•(V) = 0 . (11.6)

Figure 2.2 is a differential element of the vapor space in

the condenser and is used to derive the conservation of linear

momentum equation for the mixture of noncondensible gas and A

working fluid vapor. The conservation of linear momentum for

the mixture of noncondensible gas and working fluid vapor is

derived by setting the summation of external forces acting on

the control volume in the x direction equal to the net efflux

of linear momentum.
*b".

F = I V(pV dA)CS,x

19
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T

The summation of external forces acting in the x direction are:

Fx= P gAc dx - - Pvdx -dp Ac

These terms represent the force due to gravity acting on the

control volume minus the forces due to wall shear stress and K

pressure acting on the control volume. The wall shear stress
I.."

can be calculated by:

2

where A is a dimensionless friction factor. If developed
16 "<

laminar flow is assumed the Darcy friction factor, x _ 16

could be used with the Reynolds number defined as

p VDv
4 -

The equation for wall shear stress then becomes:

T = v
T -VDv

where p is the viscosity of methanol vapor, V is the velocity

of the vapor and Dv is the diameter of the vapor space. The

terms to represent the net efflux of linear momentum are:

f V(pvdA) V m p dx + (pv +d(pv)(v+dv))Ac - pV2 A
CS,x

V m P dx + A pvdv + A vd(pv)
a a v c c

21



By setting the summation of external forces in the x direction

equal to the net efflux of linear momentum and combining like

terms, the result is:

P m P
dP d 2 V a v 8jv
dx g - d-x ) - AKv A D (11.7)c •a Ac Dv

The above equation represents conservation of linear momentum

for the mixture of noncondensible gas and working fluid vapor.

Kane [Ref. 5] assumes zero velocity for the noncondensible gas

and derives an equation for conservation of linear momentum

of species 'b.' The species 'b' conservation of linear momen-

tum equation is not necessary to derive the model in this

analysis. Since the conservation of linear momentum for the

mixture of the noncondensible gas and working fluid vapor is

the more consistent approach, Equation (11.7) is used through- . -.

out this thesis.

Figure 2.3 is a differential element of the condenser wall

and represents the wick and pipe wall combination as one ele-

ment. The wick-wall combination is treated like a fin and is

used to derive the equation for the conservation of energy.

Heat transfer is represented by the latent heat deposited on

the 'fin' by condensation of the working fluid vapor plus the
.• -,..•

heat transfer from Fourier's law of conduction entering the

'fin.'

Qin = ma hfg Pv dx + Qc

22
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Heat transfer out is represented by Fourier's law of conduction

leaving the 'fin' plus the energy which is convected away from

the fin.

Qout Qc + dQc + h Ps (T-T.)dx

The equation for conservatior of eneray is derived by setting

heat transfer in equal to heat transfer out of the 'fin.' I

2 hP h P
d T s f arv

2- kp(T -T.) +-k-p m = 0 (II.8)
dx p kA

The experimental data from Batts [Ref. 4] is used to

correlate this analysis. The working fluid is me~thanol,

CH 3OH. The working fluid vapor in the heat pipe is in direct

contact with the working fluid liquid in the wick and is -

therefore considered to be a saturated vapor at the local

temperature of the wick-wall combination. Eubank [Ref. 81

tabulates data for the saturation properties of methanol.

These tables are used to generate functions of local temperature

for partial pressure, partial density and heat of vaporization

of saturated methanol vapor.

(a) The partial pressure of saturated methanol vapor is a

function, Fa, of local temperature.

P Fa(T) (11.9)a

24
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(b) The partial density of saturated working fluid vapor

is a function, Sa, of local temperature.

P = Sa(T) (II.10)

(c) The working fluid heat of vaporization is a function,

Hfg, of local temperature.

h 1iH (T)(1.)
fg fg

In summary, the eleven equations which are stated in this

chapter form the foundation for the analysis of a vertically

oriented, variable conductance heat pipe. The remaining

chapters derive a numerical model and iteration scheme based

on the eleven equations from this chapter.

25



III. NUMERICAL MODEL FORMULATION
ON

A. VARIABLE ELIMINATION

The system of eleven equations can ultimately be reduced

to a system of three equations by eliminating variables.

Equation (11.9) is eliminated by using the equation of state,

Fa(T), for P a The partial density of the saturated working

fluid vapor, pa (Equation 11.10) is eliminated by using Sa(T).
H (T), Equation (II.11), is used to eliminate h The non-
fg fg*

condensible gas pressure, Pb' is eliminated by using the perfect

gas equation of state (Equation II.1). The treatment of worki4:g

fluid vapor and noncondensible gas as thermodynamically inde-

pendent substances gives total pressure as the sum of partial

pressures and total density as the sum of partial densities.

Total pressure is eliminated by using the sum of partial pres-

sures, Equation (11.3). The noncondensible gas density is

eliminated by solving Equation (11.2) for Pb and replacing Pb

with p -pa The definition for mass fraction of the working
a- °

fluid vapor, Equation (II.4), is used to replace total density.

After making the preceding seven substitutions, four equa-

tions with four unknowns are left. The four remaining depen-

dent variables which are functions of axial position are:

2(a) ma, working fluid condensation flux [lbm/ft sec]

(b) V, velocity of the mixture [ft/sec] .2

(c) Wa' working fluid mass fraction [0 < 1 1

(d) T, temperature [0R1.

'ap26
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The four remaining equations are:

v d (Sýa V, 0(a) me aAK + dx-x WaV II~)"°-•

....

v d d (SaD dwa
(b) m -cK + j-(Sa V) - •-•(-•a d-) = 0 (111.2)a A dx- a dx

dFa d (1_1) R T)(c) - W -(Sa(-a M T

Sa b 2 M Pv8

(-g) d• S- 2 v a v(1.

a a c a c v

2 P .
d T sfg(d) d2T Ps h(T-T ) + ma = 0 (III.4)d2 KAp KAp a:
dx p p

Furthermore, Equation (III.1) can be eliminated by solving this

equation for working fluid condensation flux, ma, and substi- ".S

tuting that into the three remaining equations.

The resulting three equations with dependent variables of

velocity, working fluid mass fraction, and temperature are:

d• Sa d _ • •d •Sa dwa "ii
(a) d-- ,7-V) + -(Sa V) - -- ,,--(- D- = 0(II.5

a_ dx dx wa x 115a a

(b dF-a- +d (_S i (- -i) R T) -..•
(b) x+ a M

a b

Sa d Sa 2 Vd Sa V"_
= (j- g) - j~- ) +~--(--v)- ADV (116S dxV-2AD) (111.6)

a a a a cAv

27
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d2T H A
(c) dT s h (T-T ) - d S-ja(V) 0 (111.7)

dx 2 KAp KAp aaV W a

This set of three equations and three unknowns describe the

operation of a vertically oriented, gas loaded, variable conduc-

tance heat pipe.

B. BOUNDARY CONDITIONS

These equations describe the thermodynamics of the heat

pipe condenser. The independent variable, the distance along

the heat pipe, is measured with the origin at the condenser

end farthest from the evaporator. The total condenser length

is defined as L. Based on the system of three equations, two

. boundary conditions are required for temperature and mass frac-

tion and one boundary condition is required for velocity.

From experimental data, the temperature at the far end of

the condenser and in the evaporator are known. The boundary

conditions for the dependent variable of temperature are:

when x 0, T T where T equals the temperature at the
far endCof the condenser.

when x = L, T = Te, where Te equals the temperature at
the end of the condenser closest to
the evaporator.

The highest velocity of the working fluid vapor is reached

in the evaporator exit. This velocity can be calculated from

the known heat input to the heat pipe. The vapor velocity in

the evaporator, Ve, is equal to the heat transfer rate into
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the evaporator divided by the product of local density of the

working fluid vapor, cross sectional area of the vapor space,

and the local heat of vaporization of the working fluid. Due

to the physical boundary at the end of the pipe, where x = 0,

the velocity at the farthest end of the condenser away from the

evaporator is equal to zero. The boundary conditions for the

dependent variable of velocity are: J.

.PI

when x = 0, V = 0.0 and

Qe Ahi

Ac hfge "_
e

Based on the system of three equations, only one of the above

boundary conditions is required. The boundary condition at the

origin is used for the iteration scheme and Ve is used to

normalize velocity.

The temperature and pressure at the farthest end of the

condenser from the evaporator are known from laboratory data.

Assuming thermodynamically independent substances, the total

pressure is the sum of partial pressures and the total density

is the sum of partial densities. The saturation pressure of

the working fluid vapor, Pa' could be determined from tabulated

data by entering the saturation pressure table with condenser

temperature. An example of this table can be found in Eubank

[Ref. 8] for methanol saturated vapor. The noncondensible gas

pressure, Pb' can be calculated by subtracting the working

29
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fluid vapor pressure from the total pressure. With this data,

the initial mass fractions can be established by using the

following procedure from Reynolds and Perkins [Ref. 6]:

Pa
Xa P-

Xtotal

P b
Xb Ptotal

Lbm "

XMa = Lbm for species 'a'a Lbmole mixture

Lbm= Lbm ~for species 'b' •..
XbMb Lbmole mixture f se sb

XaMa

a X M +Ma0 Xa a +Xb b

XbMb
b bM b)0 XaMa +XbMb

At the end of the condenser closest to the evaporator, it is .

assumed that the concentration of noncondensible gas is zero

so that at this point wa is equal to one. The boundary condi-

tions for the dependent variable of mass fraction for the

working fluid vapor are:

when x = 0, w =w , anda a0

03
when x = L, w = 1.0

a
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C. EQUATION NONDIMENSIONALIZATION

To generalize the equations and facilitate their solution

it is convenient to use dimensionless variables defined as

follows.

(a) The independent variable, condenser length, is defined

by:

x

where x is the distance along the heat pipe, measured from

the condenser end farthest from the evaporator, and L is the

total condenser length.

(b) A dimensionless temperature can be defined by:

T -T

T - T.
e

where T is the local temperature, T is the evaporator tempera-

ture, and T. is the ambient temperature. In this analysis, the

first and second derivative of temperature with respect to dis-

tance are required.

T -TdT dT de dn e -dO
dx d6 dn dx L d"l

and

d2T d dT d e d!I' a
SdxL d dxdx did

_Te-T d28
e oo dO Ei

L2 dr2
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(c) The second dependent variable, working fluid mass

fraction, is dimensionless by definition and its numerical

value is greater than or equal to zero and less than or equal

to one. The first derivative of working fluid mass fraction

with respect to distance is:

d-a dwd - 1 dw

(d) Velocity of the working fluid vapor is made dimension-

less by normalizing local vapor velocity with the evaporator

vapor velocity, Ve. The nondimensional velocity and the first

derivative of velocity with respect to distance are then

defined by:

V* V
Ve

dV dV dV* dn Ve dV*
Tdx d-T -Tn dx -L d r

(e) In order to complete nondimensionalizing process, the

". following other dimensionless variables are used.

(i) The working fluid vapor density is normalized with

respect to the evaporator vapor density.

Sa
Sa* SSa e
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(ii) The working fluid vapor pressure is compared

to the evaporator vapor pressure.

Fa* = Fa
e

(iii) The working fluid heat of vaporization is normalized

with respect to the condenser working fluid vapor heat of

condensation.

H
H* - .I.
fg Hfg,c

(iv) The working fluid vapor viscosity is normalized

with respect to the evaporator vapor viscosity.

e .\

After substitution of nondimensional terms, the three

equations which describe operation of a vertical variable

conductance heat pipe become:

dw
-d Sa*.V* d DdS* a(18(a) * + (Sa*V* a) 0 (III8).

The dimensionless coefficient from Equation (111.8) is

D
Nl =L4

e
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Fae dFa* R (Te-T() d Too

(b) eV dn +-1) (8 +Te_*))-
Saaee be

LV Sa* d Sa*V* 2  V* d ,Sa*V*=-a •"• ) + V -\T

V a a a
e

P 8p L *v a V* (111.9)Ac DvSae Ve•

- The dimensionless coefficients from Equation (111.9) are

Fa R(T -To) T
e e 0__

N2 - e N3 = N4 T -T '-
SaeVe MbV e

Lgv 8eL -
N5 = , and N6 v Ac L

-- I A DSa V
V cv e e

e

2 P hL 2  H A Sa V L
(c) d a 8- fg,c c e e-H

K Ap (Te -To,) fg

d Sa*V* = (111.10)
a .

The two nondimensional terms of interest from Equation (III.10)

are

Ps hL 2  Hfg,c Ac Sae Ve L
-N7 K and N8 - K A (Te -T) e

p p e

Numerical evaluation of the dimensionless coefficients is

required to determine the relative significance of each term.
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Two experimental runs from Batts [Ref. 4] are used to evalu-

ate the dimensionless coefficients. A low powered run

(Q = 22.9 watts) with methanol as the working fluid, and krypton

as the noncondensible gas, is chosen. This run demonstrates

an example of the heavier molecular weight noncondensible gas

diffusing through a large portion of the condenser. A second

higher powered run (Q 70 watts) with methanol as the working

fluid, and helium as the noncondensible gas, is chosen because

it demonstrates an example of the lighter molecular weight

noncondensible gas occupying a small portion of the condenser.

The convection heat transfer coefficient for the heat pipe is

set equal to 1.0 Btu , representing free convection. A
hr.ft. 2R

system thermal conductivity of approximately 4.56 Btu
hr.ft. OR

results from a parallel circuit combination of conductive

thermal resistances for the stainless steel pipe wall and

methanol filled stainless steel wire mesh wick. Kane [Ref. 51

calculated representative binary mass diffusion coefficients

2 2of 0.4 ft /hr for krypton-methanol and 1.9 ft /hr for helium-

methanol. These values for binary mass diffusion are also

used in this analysis. The experimental values that are used

to calculate the dimensionless constants are listed in Table

I. The values of the dimensionless constants for the two V,

experimental runs are listed in Table II.

Based on the tabulated numerical results, Equation (111.9)

is modified to:
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TABLE I

NUMERICAL DATA

Constants for both runs:

R = 1545.33 ft Lbf/Lbmole OR Gas constant

g = 32.2 ft/sec Acceleration of gravity

L 3.5 ft Length of condenser

= .0199 ft Cross sectional area of
vapor space

A .001917 ft 2  Axial cross sectional area
P of wick-wall combination

D =.15917 ft Diameter of vapor space
v

PS .524 ft Periphery of outside of
s pipe

P= .500 ft Periphery of vapor space

20h 1.0 Btu/hr ft 0R Convection heat transfer
coefficient

K 4.5585 Btu/hr ft 0 R Thermal conductivity

Low powered krypton/methanol

Q = 22.9 watts 78.1348 Btu/hr

T = 592 0 Re
T= 543 0R

TC

To 536*R

D 0.4 ft 2 /hr

M = 83.8 Lbm/Lbmole
b
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TABLE I (CONTINUED)

V = .041339 ft/sec

Fae= 10.24 Lbf/in

Hfgc = 500.21 Btu/Lbm

3
Sae= 0.054871 Lbm/ft

ve = 224.502 x10 Lbf sec/ft

High powered helium/methanol

Q = 70 watts = 238.84 Btu/hr

Te = 640R .-

T = 640'R
e

To 536°R ")

D 1 .9 ft2/hr

MT 4.0 0 3 Lbm/Lbmole

c

Ve .050485 ft/sec
22

Fae 28.52 Lbf/in2 "

Hfg,c = 501.11 Btu/Lbmo..

ft3
e

Sa = 0.14446 Lbm/ft 3

e= 243.993 xl0-9 Lbf sec/ft 2

* • . I*
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TABLE II

DIMENSIONLESS CONSTANTS

Low Powered Krypton/Methanol High Powered Helium/Methanol

Ni - 7.679 10-4 N 2.9869 10-3
LV LV

e e

Fa Fa
N2 2 e _ 506.355 x06 N2 e = 359.166 xl6

Sa V Sa V
e e e e

R(Te-T,) R(T T-T.)e 6e6
N3 1 - 19.4581 xl06 N3 - 507.224 x106

Mb Ve Mb V2
e e

Too Too

N4 = - 9.571 N4 T - 5.154Te-T TeT.
e co e 0

N5 - cLg 65948.4 N5 = g 44218.0
V V

e e

P 8pe L P 8w L
N6 v e 14.086 N6 - v e = 4.76143A D Sa V A D Sa Vc v e e c v e e

P hL 2  P hL 2

N7 s - 734.553 N7 - s - 734.553
K A K A

p p

H fc A Sa V L H A Sa V L
N8 fg,c c e e N8 = g,c c e e

KA (Te-T.) K A (Te-Too)

= 581.362 = 1008.30
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Fa a R(Te-T) T
e dFa* + e- d 1S Go+777 2 [ (Sa* -1) (0 +T -T--• z

Sa V e MbVe a e coe e b

Lg Sa* (111.11) I'.

V-2 W a
e

The viscous term and the two inertia terms are neglected be-

1 3 6cause their order of magnitude is 10 compared to 10 and 106

for the remaining terms. The nondimensional equations (111.8),

(III.10), and (III.11) are used to develop the analytical model

of the vertically oriented, variable conductance heat pipe.

D. FORMULATION OF THE NUMERICAL MODEL

Equation (111.8) is integrated and is solved for the first

derivative of the working fluid mass fraction. Integrating

both sides of Equation (111.8) gives:

Sa*V* S* a+ Sa*V* - Nl S C . (111.12)
w a a dr)

The lower endpoint is used (q = 0) to evaluate the constant

of integration. When q = 0, V* at the end of the pipe equals

zero. The constant of integration then becomes:

PO dWa
C = -Nl (1.13)Sa e dn 10

By replacing the value for the constant of integration and

solving for dwa/dn, the final version of Equation (111.12) is:
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dw a _V*W a W p0  dwada _-V* V*a •a P0 da
dii N Ni + 0WSadi " (111.14)e 0 S!

The derivative in Equation (II1.11) is expanded to get the

following.

ddSa 1(6 +N4))
a

dSa* ( -1 da
Sd ( 1) (e +N4) + Sa* 2-ý--(e +N4)

a

+ Sa*( 1) d (111.15)wa d

dSa*
The chain rule is applied to da

dn

dSa* dSa* dSa dT dO e (T -T
__ _ ___ e dSa dO

dn dSa dT dO d - (Sa dT d(111.16)e

* dFa*
Applying the same procedure to d--, the result is:

T -T
dFa* T e - dFa de

d -( Fa-) dT d n (111.17)
e

dO

By combining terms and solving for d, the final form for

equation (III.11) is:
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d6(a) The coefficient of is Set equal to G(ae).

N2(Te-T) dFa N3(Te-T,) dSa
G +Fa dT Sa - (- -1) (8 + N4)

Sea

+ N3(Sa*) (--) . (-1).18)
a

(b) Solving for d, the result is

de [N5Sa* N3Sa* da.
d -j W + 2  dn (8 +N4)]/G(w a,) (111.19)

a

Equation (III.10) is integrated and the result is:

do Ndq N8 H* Sa*V* C . (111.20)
dn 0 fg Wa

0 a,

Using the boundary condition of 1 = 0 where V* = 0.0, the

constant of integration is:

C dO "
C d . (111.21)

The final version of Equation (II1.10) which is solved for V*

is:

(d N7(f-dn)wW !!-')/(N8H*gSa*) . (111.22)V*=( a-N (d)a •a d f

.4
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*" The final system of three equations with nondimensional

variables is:
dw dw

a(V alS(a) Equation (111.14), -a ): , 0

dw V*VWa Wa PO dwada _ aV + a 0

+ e+
dn Nl S- Q ae n 10

dw
(b) Equation (111.19), -(W, a,--);

'dTl a dn

do N5Sa* +N3Sa* da()
da aaa

where

N2(T e-T) d~a N3(T e-T.) dSa(

G(wO) = Fae d-a + ae da 1
a F a dT dTSae e a

+ N3(Sa*) (1.-l)
a

, , dOdn , O- • -0,-
(C) Equation (111.22), V*(wa P I

0 0
V* (- N(f• d'0 ) / (N8H~gSa*).-"-V* = d8 maN (/d a -a dn f '.

The boundary conditions for this set of equations are the

following:
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(a) For nondimensional temperature:

S= 0.0 - Te - T Oc

0.0.

n = 1.. 0 = .0

dO = ''-"

The constant a is not known but, based on laboratory data, can

be estimated and through an iteration process the correct value

can be obtained. A proposed iteration scheme is presented in

Chapter IV. .-

(b) For working fluid vapor mass fraction:
..-

• °-

0.0 W =a a 0  •

=1.0 Wa 1.0

dwa "
A-. "*

The constant 1 is not known, but can also be estimated for an

initial value and, through an iteration scheme, a correct value

can be obtained.

(c) For working fluid vapor dimensionless velocity:

.= 0.0 V* 0.0

.-N

04
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E. AUXILIARY EQUATIONS

A means to derive saturated working fluid heat of vapori-

zation, density, and pressure is required before a numerical

solution is attempted. Using methanol as the working fluid and

data from Eubank (Ref. 81 for saturation conditions, the

following functions are derived.

1. Polynomial for the Working Fluid Heat of Vaporization

Tabulated values of the heat of vaporization for methanol

are plotted on Figure 3.1 with a solid line. A Fortran program,

polyfit, is used to obtain the coefficients of the following

polynomial:

2
H fg(T) = aT + bT + c (111.23)

where a = -9.96 x10 Btu/Lbm(OR) , b = .730 Btu/Lbm(OR), and
c = 397.99 Btu/Lbm. The values of H fg(T) using this polynomial

are plotted on Figure 3.1 with a dotted line.-

2. Polynomial for the Working Fluid Vapor Saturation
Density

Tabulated values for methanol saturated density are
,.-..!

plotted on Figure 3.2 with a solid line. Again the Fortran

program, polyfit, is used with the following modification:

T T*
T*= where Tref = 500*R andre e

T ref re

A polynomial in the variable • is used to describe the

saturation density.

44
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The polynomial, Sa(&), is then: 
I %

3~ 2

Sa(O) = a&3 + b2 + cF + d (111.24)

I
where a = .1293 Lbm/ft , b = -1.0475 Lbm/ft , and

3 3
c = 2.8868 Lbm/ft 3 and d = -2.7037 Lbm/ft 3  The value of _• ..

dSa/dT is also required for the numerical solution. This is:

dS__a (3 3i'
d - OaC + 2bE 2 + cE)/Tf (111.25)

ref

3. Polynomial for the Working Fluid Vapor Saturation
Pressure

Tabulated values for methanol saturation pressure are

plotted on Figure 3.3 with a solid line. Polyfit is used with

the same modification.

The polynomial Fa(C) is:
"V.

Fa(&) = a 3 + b2 + cE + d

2 2

where a =24.5994/ Lbf/in2, b =-191.2472 Lbf/in2,

c = 498.4940 Lbf/in2 , and d = -439.9883 Lbf/in 2 The first

derivative of Fa(&) with respect to temperature is equal

to:

dFa - (3a E3 2bC 2 + . (111.26)dT + b •/ref.(I.2)•

%
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IV. DISCUSSION AND RECOMMENDATIONS

A. DISCUSSION

The final version of the model for a variable conductance

heat pipe with a vertical orientation is a system of three

ordinary, non-linear, coupled, differential equations. These

three equations are (111.14), (111.19), and (111.22).

The remaining challenge for the numerical model is to pro-

pose an iteration scheme that can solve this system of three equa-

tions. A special thank you goes to the collaboration of Dr. M.D.

Kelleher and Dr. K.T. Yang for the following iteration technique.

The steps of the iteration procedure are as follows:

(a) To start the iteration process, assume a form for the

relationship between 0 and wa such that wa = e + C2. This

linear relationship is reasonable because:

(i) When r = 0, both w and e are values close to

zero.

(ii) When "i L both wa and 0 are equal to 1.0.

(iii) This step is required for the first iteration

only.

The equations for this step are then:
, 44

Wa Cie + C (IV.l) .
"a2

dw
a de

- C1 dr (IV.2)
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Then, using Equation (111.19), solve for 4. This establishesden

first degree equation, d, in terms of 6 only which can then

be integrated numerically to establish a first iteration

relationship for e(n).

(b) With this relationship for a and a1 defined from step

(a) above, Equation (111.22) can be solved for V*.

(c) Once step (b) is completed, Equation (111.14) can be

solved for dw a/dfl. The integral of dw a/dq is then used to

define wa" The process can then be repeated.

In summary, the first iteration goes through steps a-c

and the remaining iterations go through steps b-c until there

are no further changes in the form of e, wa' and V*. In

*. theory, the outcome of this numerical iteration is a table

which gives dimensionless temperature, 0; velocity, V*; and

mass fraction of the working fluid vapor, w versus non-
a

dimensional condenser length, n.

B. RECOMMENDATIONS

1. This numerical analysis was written to yield results via
a computer program. The Continuous System Modeling
Program III [Ref. 9] is a computer package that could
be used to solve the system of equations. The CSMP
[Ref. 91 includes a powerful integral statement which
carries out a Fourth Order Runge-Kutta Method.

2. This model assumes constant values for the binary mass
diffusion coefficient and the convection heat transfer
coefficient. Once numerical values are obtained from
the iteration scheme, the accuracy can be improved by
using analytical expressions instead of constants for
the binary mass diffusion coefficient [Ref. 10] and the
convection heat transfer coefficient [Ref. 11].

3. An attempt could be made to model the variable conduc-
tance heat pipe that is not in a vertical orientation.
Kelleher [Ref. 3] shows that a stratification of the

S50
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working fluid and noncondensible gas occurs when the
heat pipe is in the horizontal position. This position
makes the transport processes inside the pipe threeI; dimensional, which would require a finite difference 15

Scomputer model for solution.
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